

ANALYSIS OF PREVIOUS LEARNING HAS INDICATED THAT A SIMPLIFIED CALCULATION STRATEGY MAY ASSIST LEARNERS IN UNDERSTANDING ThE LOGIC BEHIND MATheMatical CALCULATIONS. BY AVOIDING THE TEACHING OF NUMEROUS DIFFERENT STRATEGLES, WE CAN PREVENT CONFUSION WHICH, UNDER PRESSURE, CAUSES CHILDREN TO MAKE inapproppiate decisions about how to tackle a QUESTION.

IT IS EXPECTED THAT CHILDREN WILLL MOVE ON TO MORE forMal calculation methods when they are ready to DO SO. THE USE OF CONCRETE MANIPULATIVES, SUCH AS NUMICON AND CUISENAIBE RODS, WILL BE MAINTAINED thROUGHOUT SCHOOL LIFE, TO REINFORCE THE LINK WITH PREVIOUS LEARNING AND MAINTAIN UNDERSTANDINg.

PRACTICAL MULTIPLICATION

use real obiects to degonstrate arbays
and LINK to Countwg IV groups

$$
2 \times 3=6
$$

REPEATED ADDITION

adding groups of counters to understand NUMBER FACTS.

SKIP COUNTING IN 2 s, 5 s AND $10 s$

couvt in twos, fives and ters, forvahbos avd BCCWHARSS.

KEE YOCABCHRRY

WEAR 2

PRIOR UNDERSTANDING LINKs TO GREATER
VALUES.
$3 \times 6=18$
BOTH AS AN ARRAY AND MULTIPLES OF NUMICON SHAPES

NuMBER LINES
USING CUISINAIRE 3×6 STILL EQUALS $18!$

THIS LINks TO FILLING IN BLANK NUMBER LINES.

MULTIPLICATION TABLES
relate tables kNowledge to doubling and hal VING

HER 2

BAR MODELLING

chlldren are introduced to Multiplication calculations being represented BY BAR MODELS. THIS SHOULD BE INTRODUCED USING A MIXTURE OF CONCRETE mavipulatives, cuisenalie rods, and pictorial representations.

$$
3 \times 5=?
$$

5	5	5

$$
5 \times 3=?
$$

(U)

When chlldrev have mastered short multiplication, they should move onto loNg Multiplication methods. once Agall, visual iMages and concrete apparatus should be used to support understanding as required.

fogMal LoNg Multiplicaton Mettod

MOVING ONTO greater values
once these techiquues have been mastered chlldren will apply ther understanding $\mathbb{I N}$ a range of probleg sollung contexts, including Mastery qUESTOONS WITH PROMOTE HGGEE ORDER THNVKIVG SKLLLS.

Multiplication Tables

WORK ON ALL TABLES MUST CONTINUE THROUGHOUT, REGLLARLY, TO SUPPORT UNDERSTAVDING Of THESE METHODS.

UPPER RES STARE

short Multiplication will be consolidated alongside the use of visual apparatus to support understanding.

LARGER VALUES

DECIMALS, WITH AN EMPHASIS ON MONEY.

ONCE THESE TECHNIQUES haVE BEEN MASTERED CHILDREN WILL APPLY ThEIR understanding IN a range of probleM solving contexts, INcluding mastery qUESTIONS WITH PROMOTE HIGHER ORDER THINKING SKILLS.

NuMBER LINES AND ARRAYS BULLD ON PREvious learving, helping WITh the transition to more formal recording. Bab modelling methods and other PICTORIAL REPRESENTATIONS SUPPORT DEEPER MATHEMATICAL UNDERSTANDING THROUGHOUT LKS2.

ONE DIGT BY ONE DIGIT, BOTH AS AN array avd a nuMber liNe.
$12 \times 4=48$
TWO DIGITS BY ONE DIGIT AS AN ArBaY

REENFORCE THROUGH USE OF A GRID. THIS IS NOT A PARTICULARLY QUICK CALCULATION METHOD, BUT IS A USEFUL MODEL FOR UNDERSTANDING MORE FORMAL METHODS

USE OF gRIDS to demonstrate multiplication may be of use. it is Not a quIck or efficient Method, however it cav be beneficial in helping chlldren TO CONCEPTUALISE MULTIPLICATION OF LARGER NUMBERS.

\times	10	4
3		
	30	

UsING CONCRETE MANIPULATIVES AND LATER MOVING TO USING IMAGES ThAT represent theM, supports puplls' early understanding, leading towards forMal WRitten Methods in year 4. Thls is a mental strategy, Which they may choose to support With inforMal jottings, including a full grid, as EXEMPLIFIED HERE.

CHILDREN ShOULD BE MOVED ONTO SHORT MULTIPLICATION AS SOON AS POSSIBLE.

MULTIPLICATION TABLES
3,4 AND 8 TIMES TABLES MODELLED USING ARBAYS AND DOUBLING KNOWN FACTS WITH EMPhasis ON RAPID RECALL.

6, 12, 9, 11 AND 7 FOLLOW THROUGH ARRAYS, RHYME AND SONG.

